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1 Waves on Strings

1.1 What is a “wave”?

Difficult to define precisely: here are two “definitions”.

• COULSON (1941): “We are all familiar with the

idea of a wave; thus, when a pebble is dropped into a

pond, water waves travel radially outwards; when a pi-

ano is played, the wires vibrate and sound waves spread

throughout the room; when a radio station is transmit-

ting, electric waves move through the ether. These are all

examples of wave motion, and they have two important

properties in common: firstly, energy is propagated

to distant points; and secondly, the disturbance trav-

els through the medium without giving the medium as

a whole any permanent displacement.”

• WHITHAM (1974): “...but to cover the whole

range of wave phenomena it seems preferable to be guided

by the intuitive view that a wave is any recogniz-

able signal that is transferred from one part of the

medium to another with a recognizable velocity of

propagation.”

We begin with, perhaps, the simplest possible example.
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1.2 Derivation of Governing PDE

Figure 1: A piece S of a string

• We suppose the string is under tension F , and that its

mass per unit length is ρ. We consider transverse motion

only (⊥ Ox), and let the displacement be y(x, t); we

shall suppose y is small or -more precisely- we suppose

| ∂y/∂x |� 1 everywhere.

• Longitudinal motion negligible ⇒ F is independent of

x (see part ii below). We also take ρ independent of x.
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• Apply N2 to a small element of the string AB of length

δs.

ρδs
∂2y

∂t2
= F{sin(ψ + δψ)− sinψ}. (1)

Figure 2: Local geometry of string S

Now, from sketch Fig. 2

δs2 ≈ δx2 + δy2 ⇒ δs ≈

{
1 +

(
∂y

∂x

)2
}1/2

δx (2)
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Therefore, because | ∂y/∂x |� 1 ∀ x (by assumption),

δs ≈ δx (3)

to highest order. Likewise

tanψ = ∂y/∂x� 1⇒ ψ ≈ ∂y/∂x,

and, in Eq. (1),

sin(ψ + δψ)− sinψ ≈ cosψ · δψ
≈ {1 + tan2 ψ}−1/2δψ

≈ δψ

≈ δ(∂y/∂x)

≈ (∂2y/∂x2)δx.
Thus Eq.(1) becomes

∂2y

∂t2
=
F

ρ

1

δx

∂2y

∂x2
δx =

F

ρ

∂2y

∂x2
. (4)

Finally we have

∂2y

∂t2
= c2∂

2y

∂x2
, (5)

where the constant c satisfies

c2 =
F

ρ
. (6)

• Eq. (5) is the 1D wave equation and c is the wave speed.
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• (i) For the D string of a violin, F ≈ 55 N, ρ ≈ 1.4×10−3

kgm−1 ⇒ c ≈ 200 ms−1

• (ii) We have assumed F is uniform. Hooke’s Law ⇒
change in F ∝ change in length. But

change in length = δs− δx

≈

{
1 +

(
∂y

∂x

)2
}1/2

δx− δx

≈

{
1 +

1

2

(
∂y

∂x

)2

− 1

}
δx

=
1

2

(
∂y

∂x

)2

δx

which is second-order in small quantities⇒ the assump-

tion of uniform F is OK.
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• (iii) The kinetic energy (KE) of an element of length

δs is

1

2
ρδs

(
∂y

∂t

)2

≈ 1

2
ρ

(
∂y

∂t

)2

δx,

which implies that the KE between x = a and x = b

(> a) is

KE = T =
1

2
ρ

∫ b

a

(
∂y

∂t

)2

dx. (7)

The potential energy (PE) of an element of length δs is

F × increase in length = F (δs− δx)

≈ 1

2
F

(
∂y

∂x

)2

δx (from(ii)).

Thus the PE between x = a and x = b (> a) is

PE = V =
1

2
F

∫ b

a

(
∂y

∂x

)2

dx. (8)

NB T, V are second-order in small quantities, i.e. (∂y/∂x)2,

(∂y/∂t)2, whereas the wave equation Eq. (5) itself is first-

order.
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1.3 D’Alembert’s solution and simple applications

• Unusually we can find the general solution of the wave

equation Eq. (5). Change variables from (x, t) to (u, v),

where

u = x− ct, v = x + ct. (9)

Chain rule ⇒

∂y

∂x
=

∂y

∂u

∂u

∂x
+
∂y

∂v

∂v

∂x
=
∂y

∂u
+
∂y

∂v
= yu + yv ⇒

∂2y

∂x2
=

(
∂

∂u
+
∂

∂v

)
(yu + yv) = yuu + 2yuv + yvv,

and

∂y

∂t
=

∂y

∂u

∂u

∂t
+
∂y

∂v

∂v

∂t
= −cyu + cyv ⇒

∂2y

∂t2
= c2

(
∂

∂u
− ∂

∂v

)
(yu − yv)

= c2(yuu − 2yuv + yvv).
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• Substitute in the wave equation Eq. (5)

c2(yuu + 2yuv + yvv) = c2(yuu − 2yuv + yvv)

⇒
yuv =

∂2y

∂u∂v
= 0. (10)

Therefore,

∂

∂u

(
∂y

∂v

)
= 0⇒ ∂y

∂v
= g?(v),

where g? is any function1 ⇒

y =

∫ v

g?(s)ds︸ ︷︷ ︸
g(v)

+f (u),

where f is any function1. Thus

y = f (u) + g(v),

i.e.

y = f (x− ct) + g(x + ct). (11)

Eq. (11) is d’Alembert’s solution (the general solution) of

the wave equation (5), first published in 1747 [J. le Rond

d’Alembert (1717-83)].

1Of course f , g must be differentiable (except, perhaps, at isolated points)
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• The functions f and g in Eq. (11) are determined by

the boundary and initial conditions. For the moment we

suppose the string is unbounded in both directions, i.e.

−∞ < x <∞.

To begin with, suppose that, at t = 0,

y(x, 0) = Φ(x), ẏ(x, 0) = 0. (12)

Thus the string is initially at rest ∀ x, but has a displace-

ment given by y = Φ(x).

From (11) and (12) we must have

f (x) + g(x) = Φ(x), −cf ′(x) + cg′(x) = 0.

where ′ denotes “derived function”. The second gives

f ′(x) = g′(x)⇒ f (x) = g(x)+α, where α is a constant.

The first then gives:

f (x) =
1

2
Φ(x) +

1

2
α, g(x) =

1

2
Φ(x)− 1

2
α.

Thus, from Eq. (11):

y(x, t) =
1

2
Φ(x− ct) +

1

2
Φ(x + ct). (13)
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1.3.1 Examples

The Heaviside function

The Heaviside [O. Heaviside (1850-1925)] function H(x)

is defined by

H(x) =

{
1 (x ≥ 0)

0 (x < 0)
(14)

Figure 3: Heaviside function
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Example 1

At t = 0, an infinite string is at rest and

y(x, 0) = b{H(x + a)−H(x− a)}, (15)

where a, b > 0 constants. Find y(x, t) for ∀ x, t and

sketch your solution.

Solution

Figure 4: Shifted Heaviside functions

Thus Eq. (15) has the sketch y(x, 0)

Figure 5: The initial profile y(x, 0)
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Eq. (13) gives

y(x, t) =
b

2
{H(x− ct + a)−H(x− ct− a)}

+
b

2
{H(x + ct + a)−H(x + ct− a)} (16)

The first term is like y(x, 0) except that

• (i) its height is (1/2)b, not b, and

• (ii) its end points are (ct− a, ct + a), not (−a, a).

This is a signal with graph like Fig. 5 except for (i) and

(ii). Thus the first term in Eq. (16) has graph:

Figure 6: Travelling to right with speed c
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Likewise the second term has graph:

Figure 7: Travelling to left with speed c

The sum of the two pulses has a graph which depends on

whether they overlap; this happens for t such that

−ct + a > ct− a
⇒

t < a/c.
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Figure 8: (a) t < a/c; (b) t > a/c

• This example illustrates well what Eq. (11) represents.

The term f (x−ct) has the same shape and size ∀ t (wave

of permanent form); as t increases the profile moves to

the right with speed c. Likewise g(x + ct) is a profile of

constant shape and size that moves to the left with speed

c. Each is a travelling wave (or progressive wave). In the

above example, the initial profile splits into two; one half

travels to the right, one half to the left.
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Example 2

Consider Eq. (12) with Φ(x) = a sin(kx), where a and k

are constants.

From Eq. (13) ⇒

y(x, t) =
1

2
a {sin[k(x− ct)] + sin[k(x + ct)]} . (17)

We shall revisit Eq. (17) soon.

• More general than Eq. (12) is the case when the string

is also moving at t = 0.

y(x, 0) = Φ(x), yt(x, 0) = Ψ(x). (18)

From Eqs. (11) and (18) we now have to choose f (x) and

g(x) so that

f (x) + g(x) = Φ(x), −cf ′(x) + cg′(x) = Ψ(x).
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The second gives

f ′(x)− g′(x) = (−1/c)Ψ(x)

⇒

f (x)− g(x) = (−1/c)

∫ x

d

Ψ(s)ds,

where d is a constant. Thus

f (x) =
1

2
Φ(x)− 1

2c

∫ x

d

Ψ(s)ds,

g(x) =
1

2
Φ(x) +

1

2c

∫ x

d

Ψ(s)ds,

and from Eq. (11) ⇒

y(x, t) =
1

2
{Φ(x− ct) + Φ(x + ct)}

+
1

2c

∫ x+ct

d

Ψ(s)ds− 1

2c

∫ x−ct

d

Ψ(s)ds

⇒

y(x, t) =
1

2
{Φ(x− ct) + Φ(x + ct)}+

1

2c

∫ x+ct

x−ct
Ψ(s)ds.

(19)
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Example 3

Given that Φ(x) = a cos(kx), Ψ(x) = −kca sin(kx) in

Eq. (18), find y(x, t).

Solution

From Eq. (19),

y(x, t) =
a

2
{cos(k(x− ct)) + cos(k(x + ct))}

− ka

2

∫ x+ct

x−ct
sin(ks)ds

=
a

2
{cos(k(x− ct)) + cos(k(x + ct))}

+
a

2
[cos(ks)]x+ct

x−ct

= a cos(k(x + ct))

Thus the two terms in Eq. (19) combine so that the wave

is purely travelling to the left.

Exercises for students:

[1] Show that Eq. (19) gives a wave travelling only to the

left (i.e. y = g(x + ct)) if and only if Ψ(x) = cΦ′(x).

[2] What initial conditions give y(x, t) = a tanh(k(x −
ct)) for −∞ < x <∞ and ∀ t ≥ 0?
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1.4 Strings of finite length

• Now Eq. (17) can be written

(since sinA+ sinB = 2 sin

[
A+B

2

]
cos

[
A−B

2

]
)

y(x, t) = a sin(kx) cos(kct) (20)

y

x

t=0

t=
p

kc

2p

Figure 9: Standing wave

Thus y is always zero at x = nπ/k.

Between x = r1π/k and x = r2π/k the string oscillates

periodically in time.

Eq. (20) is an example of a standing wave, with a being

the amplitude, k the wavenumber (k > 0), 2π/k the

wavelength. The period of oscillation is 2π/kc.
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• Standing waves occur with a string of finite length L.

Suppose the string is fixed at x = 0, x = L (e.g., a

piano wire or violin) so the solution of Eq. (5), the wave

equation, must satisfy

y(0, t) = y(L, t) = 0. (21)

We look for solutions of Eq. (5) of the form (separable

solutions)

y(x, t) = X(x)T (t) (22)

Substituting in Eq. (5) ⇒

c2X ′′T = XT̈

⇒

X ′′

X
=

1

c2

(
T̈

T

)
.

The LHS depends only on x, the RHS depends only on t

so the equation can be true for ∀ (x, t) only if each side

is a constant. There are three cases to consider.
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[1] Constant > 0 = k2

⇒

X ′′ = k2X

⇒

X = A cosh(kx) + B sinh(kx).

From Eq. (21) ⇒ A = B = 0. Not useful.

[2] Constant=0

⇒

X ′′ = 0

⇒

X = Ax + B.

From Eq. (21) ⇒ A = B = 0. Not useful.
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[3] Constant < 0 = −k2

⇒

X ′′ = −k2X,

T̈ = −k2c2T. (23)

First of Eq. (23) ⇒ X = A cos(kx) + B sin(kx).

From Eq. (21):

y(0, t) = 0 ⇒ A = 0⇒ X = B sin(kx)

y(L, t) = 0 ⇒ B sin(kL) = 0.

For useful/interesting results we cannot have B = 0

which implies sin(kl) = 0 ⇒ kL = nπ (n= 1, 2...)

⇒

X = Bnsin(nπx/L)

and

T̈ = −(nπc/L)2T.

⇒

T = α cos(nπct/L) + β sin(nπct/L).
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Thus a solution of Eq. (5) (wave equation) of the form

Eq. (22) (separable solutions) satisfying Eq. (21) (fixed

boundary) is

y = sin
(nπx
L

){
αn cos

(
nπct

L

)
+ βn sin

(
nπct

L

)}
(n = 1, 2, 3...). (24)

For each n, the solution in Eq. (24) is a periodic wave

[like Eq. (20)] with period 2πL/nπc = 2L/nc.

We often rewrite

cos(nπct/L) cos(ωnt)

as

sin(nπct/L) sin(ωnt)

where ωn is the angular frequency:

ωn =
nπc

L
. (25)

Each of the solutions in Eq. (24) is a normal mode of

vibration.
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Figure 10: Standing fundamental, 1st, and 2nd harmonics

• Now Eq. (5) is a linear equation so any linear combina-

tion of the solutions in Eq. (24) is also a solution. This

is the principle of superposition. Thus

y =

∞∑
n=1

sin
(nπx
L

){
αn cos

(
nπct

L

)
+ βn sin

(
nπct

L

)}
(26)

is a solution of Eq. (5) satisfying Eq. (21). It is in fact the

general solution of Eq. (5)-(21); the constants αn, βn are

determined by the initial conditions (see Chapter Two).

Question: In general, is this solution periodic in time?

Explain your answer.
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1.5 Some technical remarks

• Consider the real part, <, of the complex quantity

A exp[i(kx− ωt)],
where k and ω are real but

A = Ar + iAi

is complex. Now

<{A exp[i(kx− ωt)]} = Ar cos(kx− ωt)− Ai sin(kx− ωt)

=
√
A2
r + A2

i cos[(kx− ωt) + ε]

where

cos ε = Ar/
√
A2
r + A2

i , sin ε = Ai/
√
A2
r + A2

i .

We shall consider situations in which the dependent vari-

able, say φ, has the form

φ = α cos[(kx− ωt) + ε]

(or with sin instead of cos).

Note: φ = sin kx[(−α sin ε) cosωt + (α cos ε) sinωt] −
cos kx[(−α cos ε) cosωt + (α sin ε) sinωt], and the first

term is equivalent to Eq. (24).
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In linear problems it is often convenient to write (A com-

plex; k, ω real)

φ = A exp[i(kx− ωt)]; (27)

we do of course really mean the real part of Eq. (27) but

many problems can be solved most easily by working di-

rectly with Eq. (27) and only taking the real part right

at the end.

In Eq. (27), k is again the wavenumber and ω is the an-

gular frequency.

To satisfy the 1D wave equation Eq. (5), ω = kc. The

period is 2π/ω and the frequency is ω/2π. The frequency,

measured in s−1 (Hz, hertz), is the number of complete

oscillations that the wave makes during 1 sec at a fixed

position. Finally,

|A| =
√
A2
r + A2

i

is the amplitude. Eq. (27) is a periodic or harmonic wave.


