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1 Waves on Strings

1.1 What is a “wave”?

Difficult to define precisely: here are two “definitions”.

e COULSON (1941): “We are all familiar with the
idea of a wave; thus, when a pebble is dropped into a
pond, water waves travel radially outwards; when a pi-
ano is played, the wires vibrate and sound waves spread
throughout the room; when a radio station is transmit-
ting, electric waves move through the ether. These are all
examples of wave motion, and they have two important
properties in common: firstly, energy is propagated
to distant points; and secondly, the disturbance trav-
els through the medium without giving the medium as
a whole any permanent displacement.”
e WHITHAM (1974): “.but to cover the whole
range of wave phenomena it seems preferable to be guided
by the intuitive view that a wave is any recogniz-
able signal that is transferred from one part of the
medium to another with a recognizable velocity of
propagation.”

We begin with, perhaps, the simplest possible example.
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1.2 Derivation of Governing PDE

Figure 1: A piece S of a string

e We suppose the string is under tension F', and that its
mass per unit length is p. We consider transverse motion
only (L Oz), and let the displacement be y(x,t); we
shall suppose y is small or -more precisely- we suppose
| Oy/0x |< 1 everywhere.

e Longitudinal motion negligible = F' is independent of
x (see part 77 below). We also take p independent of x.
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e Apply N2 to a small element of the string AB of length
0s.

0y . .
pésﬁ = F{sin(¢ + o) — siny }. (1)

)
/: OX > >

Figure 2: Local geometry of string S

Now, from sketch Fig. 2

5y 1/2
532%5x2+5y2:>55%{1+<g—z>} dor  (2)
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Therefore, because | dy/0x |< 1V x (by assumption),

05 ~ 0x (3)
to highest order. Likewise
tany = Jdy/dx < 1 = ¢ = Jy/0x,
and, in Eq. (1),

sin(y + oY) —siny &~ cosy - 0P
~ {1+ tan?¢} 125
~ 0
~ 0(0y/0x)
~ (0%y/0x?)ox.
Thus Eq.(1) becomes
2 2 2
Oy _Fl1oy, Loy (1)
o2 poxdx? p 0z
Finally we have
0%y 2829
a2~ oa )
where the constant c satisfies
F
= 6
p (6)

e Fq. (5) is the 1D wave equation and ¢ is the wave speed.
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e (1) For the D string of a violin, F' &~ 55 N, p ~ 1.4x107?
kem™! = ¢ ~ 200 ms™!

e (77) We have assumed F' is uniform. Hooke’s Law =
change in F' o< change in length. But

change in length = ds — dx
90\ ? 1/2
~ {1+(8_y) } ox — dx
x
2
~ {1+%<%> —1}5:1:
x
1 [0y ’

which is second-order in small quantities = the assump-
tion of uniform F'is OK.
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e (ii7) The kinetic energy (KE) of an element of length

0s is
oy S| Jy ’
_pés(at) p(at) o,

which implies that the KE between x = a and x = b

(> a) is
KE =T — lp/b (%)Qda:. )

The potential energy (PE) of an element of length ds is

F X increase in length = F(ds — (5:1:)

~ F(gi) 5z (from(id)).

Thus the PE between z = a and x = b (> a) is

1 b oY\’
PE—V—§F/G <%> dx. (8)

NB T, V are second-order in small quantities, i.e. (9y/dz)?,
(Oy/0t)?, whereas the wave equation Eq. (5) itself is first-
order.
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1.3 D’Alembert’s solution and simple applications

e Unusually we can find the general solution of the wave
equation Eq. (5). Change variables from (x,t) to (u,v),

where

u=ux— ct, v =2+ ct. (9)

Chain rule =

0y

dyodu Odyov dy 0y

8u8x+8v8x_0u+8v:yU+yU:>

ox
82y 0 0
5 = (5t B0 00t ) = o 204
and

oy Oyou Oyodv B

ot ouot owor T W=

Oy
o2

9, 9,
2 — — — —
¢ <8u (%) (W = 40)

C2 (yuu - 2yuv + yvv)-
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e Substitute in the wave equation Eq. (5)

Cz(yuu + 2y + yvv) — 62 (yuu — 2y + yvv)

0. (10)

Therefore,

d (dy\ dy
%(%) —0:>%—9*(U)7

where ¢, is any function! =

v [ gu(s)ds +f (w),

A\ - g

-~

g9(v)

where f is any function!. Thus

y = flu) +g(v),
1.e.
y=flr—ct)+g(x+ct). (11)
Eq. (11) is d’Alembert’s solution (the general solution) of

the wave equation (5), first published in 1747 [J. le Rond
d’Alembert (1717-83)].

LOf course f, g must be differentiable (except, perhaps, at isolated points)
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e The functions f and g in Eq. (11) are determined by
the boundary and initial conditions. For the moment we

suppose the string is unbounded in both directions, i.e.
—00 < T < 0.

To begin with, suppose that, at ¢t = 0,

y(z,0) =2(z), y(z,0)=0. (12)
Thus the string is initially at rest V z, but has a displace-
ment given by y = d(z).

From (11) and (12) we must have

f(x)+g(z) = (), —cf'(x)+cg'(x)=0.

where " denotes “derived function”. The second gives
f'(x) =d¢(x) = f(x) = g(xr)+a, where a is a constant.
The first then gives:

fla) = %@(@ + %&, g(z) = %CD(x) _ %&.

Thus, from Eq. (11):

y(x,t) = %(I)(:IZ —ct) + %@(SE + ct). (13)
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1.3.1 Examples

The Heaviside function

The Heaviside [O. Heaviside (1850-1925)] function H (x)
is defined by

H(x)_{o (z < 0) (14)

Figure 3: Heaviside function
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Example 1
At t = 0, an infinite string is at rest and

y(x,0)=b{H(r+a)— H(x —a)}, (15)

where a,b > 0 constants. Find y(x,t) for V z,t and
sketch your solution.

Solution

y=H(x+a)

<V

-a

Figure 4: Shifted Heaviside functions

Thus Eq. (15) has the sketch y(z, 0)

y(x,0)

-a a X

Figure 5: The initial profile y(z,0)
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Eq. (13) gives

b
y(x,t) = é{H(a: —ct+a)—H(x—ct—a)}
b
+ 5{H(:U+ct+a) — H(x +ct —a)} (16)
The first term is like y(z, 0) except that
e (1) its height is (1/2)b, not b, and
e (i7) its end points are (¢t — a, ct 4+ a), not (—a, a).

This is a signal with graph like Fig. 5 except for (7) and
(79). Thus the first term in Eq. (16) has graph:

4 Y(x,0)
1
7P ‘“I_I
0 ct-a ct+a X

Figure 6: Travelling to right with speed c
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Likewise the second term has graph:

A y(X1O)

b

1
2

-ct-a -ct+a 0 X

Figure 7: Travelling to left with speed c

The sum of the two pulses has a graph which depends on
whether they overlap; this happens for ¢ such that

—ct+a>ct—a

t<alc.
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-ct-a ct-a O -ct+ta ct+a X
Ay(x,t)
1
I I Eb T~ D
-ct-a -ct+ta 0 cta ct+a X

Figure 8: (a) t < a/c; (b) t > a/c

e This example illustrates well what Eq. (11) represents.
The term f(x— ct) has the same shape and size V t (wave
of permanent form); as ¢ increases the profile moves to
the right with speed ¢. Likewise g(x + ct) is a profile of
constant shape and size that moves to the left with speed
c. Each is a travelling wave (or progressive wave). In the
above example, the initial profile splits into two; one half
travels to the right, one half to the left.
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Example 2

Consider Eq. (12) with ®(x) = asin(kx), where a and k
are constants.

From Eq. (13) =

y(z,1) = %a {sinfk(z — ct)] + sinlk(z + )]} (17)

We shall revisit Eq. (17) soon.

e More general than Eq. (12) is the case when the string
is also moving at ¢ = 0.

From Egs. (11) and (18) we now have to choose f(x) and
g(x) so that

fl@)+g(x) =),  —cff(z)+cd(x) =V().
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The second gives

F(@) — gla) = (~1/¢) / W(s)ds,

where d is a constant. Thus

and from Eq. (11) =
y(x,t) = = {CD (x —ct) + P(x +ct)}

x—i—ct r—ct
+ —/ ds——/ U(s)ds

x+ct

y(x,t) == {Cb(x —ct)+ Pz +ct)} + 210/ U(s)ds.

—ct

=
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Example 3

Given that ®(z) = acos(kz), V(x) = —kcasin(kz) in
Eq. (18), find y(x, ).

Solution
From Eq. (19),

ylz,t) = g{cos(k(x—ct))—I—cos(k(x—l—ct))}
ka z+-ct

2 r—ct
_ g {cos(k(x — ct)) + cos(k(z + ct))}

sin(ks)ds

+ 5 [eos(ks)1;

= acos(k(x + ct))

Thus the two terms in Eq. (19) combine so that the wave
is purely travelling to the left.

Exercises for students:

[1] Show that Eq. (19) gives a wave travelling only to the
left (i.e. y = g(x + ct)) if and only if ¥(z) = c¢®'(z).

2] What initial conditions give y(x,t) = atanh(k(x —
ct)) for —oo < x < oo and V ¢ > 07
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1.4 Strings of finite length

e Now Eq. (17) can be written

A+ B A-B
(since sinA+sinB:23in{ —g }cos[ 5 1)

y(x,t) = asin(kx) cos(kct) (20)

Figure 9: Standing wave

Thus y is always zero at © = nn/k.

Between = mm/k and x = rom /k the string oscillates
periodically in time.

Eq. (20) is an example of a standing wave, with a being
the amplitude, k& the wavenumber (k > 0), 27 /k the
wavelength. The period of oscillation is 27 /kc.
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e Standing waves occur with a string of finite length L.
L (eg., a
piano wire or violin) so the solution of Eq. (5), the wave

Suppose the string is fixed at ¢ = 0, z

equation, must satisfy

y(0,t) = y(L,t) = 0. (21)
We look for solutions of Eq. (5) of the form (separable
solutions)

yl(e,t) = X(2)T'(t) (22)
Substituting in Eq. (5) =

EX'T = XT

X" 1 (T
X e\T/]

The LHS depends only on x, the RHS depends only on ¢
so the equation can be true for V (x,t) only if each side
is a constant. There are three cases to consider.



1 Waves on strings 20

1] Constant > 0 = k?
=

X" =KX

X = Acosh(kx) + Bsinh(kx).
From Eq. (21) = A = B = 0. Not useful.

2] Constant=0

=

X =Ax + B.
From Eq. (21) = A = B = 0. Not useful.
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3] Constant < 0 = —&?

=

X" = kX
T = —KT. (23)

First of Eq. (23) = X = Acos(kx) + Bsin(kz).
From Eq. (21):

y(0,t) =0 = A=0= X = Bsin(kz)
y(L,t) =0 = Bsin(kL) = 0.

For useful /interesting results we cannot have B = 0
which implies sin(kl) =0 = kL = n7m (n=1,2...)

=
X = Bsin(nmx/L)
and
T = —(nwc/L)*T.
=

T = acos(nmet/L) + Bsin(nwet/L).
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Thus a solution of Eq. (5) (wave equation) of the form
Eq. (22) (separable solutions) satisfying Eq. (21) (fixed
boundary) is

. (@) nmct + B, s nmct
y = sin 7 Qv COS 7 n SN 7

(n=1,23.). (24)

For each n, the solution in Eq. (24) is a periodic wave
like Eq. (20)] with period 2w L /nmec = 2L /nec.

We often rewrite

cos(nmet /L) cos(wpt)
as
sin(nmet /L) sin(wy,t)

where w,, is the angular frequency:

Wy = —. (25)

Fach of the solutions in Eq. (24) is a normal mode of
vibration.
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1.0

0.5

- ./
A\

-0.5 i |
R second §
400 b N L
0.0 0.5 1.0 1.5 2.0 25 3.0

X

Figure 10: Standing fundamental, 1st, and 2nd harmonics

e Now Eq. (5) is a linear equation so any linear combina-
tion of the solutions in Eq. (24) is also a solution. This
is the principle of superposition. Thus

. /nmw nmct . [ nmct
Yy = ;SZTL (T) {ozncos ( 7 > + 5, sin ( 7 )}
(26)
is a solution of Eq. (5) satisfying Eq. (21). It is in fact the

general solution of Eq. (5)-(21); the constants «,, 3, are
determined by the initial conditions (see Chapter Two).

Question: In general, is this solution periodic in time?
Explain your answer.
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1.5 Some technical remarks

e Consider the real part, R, of the complex quantity

Aexpli(kr — wt)],

where k£ and w are real but

A=A +14;

is complex. Now

R{Aexpli(kxr — wt)]} = A, cos(kx —wt) — A;sin(kx — wt)

= /A2 + A? cos|(kz — wt) + €

where

cose = A, /A2 + A2 sine= A;/\/ A2+ A2

We shall consider situations in which the dependent vari-
able, say ¢, has the form

¢ = acos|(kr — wt) + €

(or with sin instead of cos).

Note: ¢ = sinkx|(—asine€)coswt + (acose)sinwt] —
cos kx[(—acose€) coswt + (asine)sinwt], and the first
term is equivalent to Eq. (24).
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In linear problems it is often convenient to write (A com-
plex; k, w real)

¢ = Aexpli(kr — wt)]; (27)

we do of course really mean the real part of Eq. (27) but
many problems can be solved most easily by working di-
rectly with Eq. (27) and only taking the real part right
at the end.

In Eq. (27), k is again the wavenumber and w is the an-
gular frequency.

To satisfy the 1D wave equation Eq. (5), w = ke. The
period is 27 /w and the frequency is w/2m. The frequency,
measured in s7! (Hz, hertz), is the number of complete
oscillations that the wave makes during 1 sec at a fixed

|A| = /A2 + A?

is the amplitude. Eq. (27) is a periodic or harmonic wave.

position. Finally,



