(1) Use Eq. (1.11) to write down the general solution of

$$\phi_{xx} = \phi_{yy}$$
.

Find the solution of this equation on $-\infty < x < \infty$, $y \ge 0$ in the following three cases:

(i)
$$\phi(x,0) = 0$$
, $\frac{\partial \phi}{\partial y}(x,0) = 4x$;
(ii) $\phi(x,0) = \cos kx$, $\frac{\partial \phi}{\partial y}(x,0) = k \sin kx$; (k constant)
(iii) $\phi(x,0) = 0$, $\frac{\partial \phi}{\partial y}(x,0) = k \sin kx$; (k constant).

(2) The transverse displacement y(x,t) of a string satisfies

$$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2},$$

where c is a constant. Write down (no working required) the general solution of this equation.

Given that the string is everywhere at rest at t = 0 and that

$$y(x,0) = \begin{cases} 0, & (-\infty < x < -a); \\ (a^2 - x^2), & (-a \le x \le a); \\ 0, & (a < x < \infty), \end{cases}$$

find y(x,t) for all x and all $t \ge 0$.

Sketch the graphs of y against x when (i) ct = 0, (ii) $ct = \frac{1}{2}a$, (iii) ct = 2a.

(3) What conditions (if any) must the constants A, c(>0) and k satisfy for $u = A\cos[k(x-ct)]$ to be a solution to each of the following two PDEs (Partial Differential Equations)?

(i)
$$u_t + au_x = 0$$
, (ii) $u_{tt} = au_{xx} - bu$,

where a, b are positive constants.

(NB There are two separate problems here.)

For (ii) (the Klein-Gordon equation), sketch a graph of c against k.

(4) Consider a wave on an infinite string $(-\infty < x < \infty)$ of uniform line density ρ , uniform tension F and wave speed c (where $c^2 = F/\rho$) of the form y = f(x - ct). Assuming that $f'(u) \to 0$ as $|u| \to \infty$ sufficiently rapidly for the relevant integral(s) to converge, use Eqs. (1.7) and (1.8) to show that the kinetic energy T and the potential energy V are equal.

Verify that the same conclusion holds if y = g(x + ct) (provided, again, that $g'(u) \to 0$ as $|u| \to \infty$ sufficiently rapidly). What can you say when y = f(x - ct) + g(x + ct)?

(5) The three dimensional wave equation for $\phi(x, y, z, t)$ is

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2},$$

where c is a constant. In a particular case $\phi = \phi(r, t)$ where (as usual) $r = \sqrt{(x^2 + y^2 + z^2)}$. Show successively that

$$(i) \quad \frac{\partial r}{\partial x} = xr^{-1},$$

$$(ii) \quad \frac{\partial \phi}{\partial x} = xr^{-1}\frac{\partial \phi}{\partial r},$$

$$(iii) \quad \frac{\partial^2 \phi}{\partial x^2} = \frac{1}{r}\frac{\partial \phi}{\partial r} + \frac{x^2}{r^2}\left(\frac{\partial^2 \phi}{\partial r^2} - \frac{1}{r}\frac{\partial \phi}{\partial r}\right).$$

Deduce that $\phi = \phi(r, t)$ satisfies the spherical wave equation

$$\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial r^2} + \frac{2}{r}\frac{\partial \phi}{\partial r}.$$

Find the PDE satisfied by $\psi = r\phi$; hence find the general solution of the spherical wave equation.

(6)The PDE

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2} + \frac{1}{c^2 \tau} \frac{\partial y}{\partial t},$$

where τ is a positive constant, models waves on a string when there is friction. Find all (non-trivial) solutions of the PDE of the form y(x,t) = X(x)T(t) given that y(0,t) = y(L,t) = 0. (Consider separately the cases (i) $2\pi c\tau > L$, (ii) $2\pi c\tau < L$ and \exists no integer n with $2n\pi c\tau = L$, (iii) $2\pi c\tau \le L$ and \exists n with $2n\pi c\tau = L$).