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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Difficult to define precisely: here are two “definitions”.

Definition (Coulson, 1941:)
“We are all familiar with the idea of a wave; thus, when a pebble
is dropped into a pond, water waves travel radially outwards;
when a piano is played, the wires vibrate and sound waves
spread throughout the room; when a radio station is
transmitting, electric waves move through the ether. These are
all examples of wave motion, and they have two important
properties in common: firstly, energy is propagated to distant
points; and secondly, the disturbance travels through the
medium without giving the medium as a whole any
permanent displacement.”

R. Erdélyi Waves on a Stretched String



Waves on Infinite Strings
Strings of Finite Length

What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Difficult to define precisely: here are two “definitions”.

Definition (Whitham, 1974:)
“...but to cover the whole range of wave phenomena it seems
preferable to be guided by the intuitive view that a wave is any
recognizable signal that is transferred from one part of the
medium to another with a recognizable velocity of
propagation.”

We begin with, perhaps, the simplest possible example.
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A piece S of a string

We suppose the string is under tension F , and that its
mass per unit length is ρ. We consider transverse motion
only (⊥ Ox), and let the displacement be y(x , t); we shall
suppose y is small or -more precisely- we suppose
| ∂y/∂x |� 1 everywhere.
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A piece S of a string

Longitudinal motion negligible⇒ F is independent of x
(see part ii below). We also take ρ independent of x .
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A piece S of a string

Apply N2 to a small element of the string AB of length δs.

ρδs
∂2y
∂t2 = F{sin(ψ + δψ)− sinψ}. (1)
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Local geometry of string S

Now, from sketch Fig. 7

δs2 ≈ δx2 + δy2 ⇒ δs ≈

{
1 +

(
∂y
∂x

)2
}1/2

δx (2)
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Local geometry of string S

Therefore, because | ∂y/∂x |� 1 ∀ x (by assumption),

δs ≈ δx (3)

to highest order. Likewise

tanψ = ∂y/∂x � 1⇒ ψ ≈ ∂y/∂x ,

and, in Eq. (1),

sin(ψ + δψ)− sinψ ≈ cosψ · δψ
≈ {1 + tan2 ψ}−1/2δψ
≈ δψ
≈ δ(∂y/∂x)
≈ (∂2y/∂x2)δx .
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Local geometry of string S

Thus Eq. (1) becomes

∂2y
∂t2 =

F
ρ

1
δx
∂2y
∂x2 δx =

F
ρ

∂2y
∂x2 . (4)

Finally we have

∂2y
∂t2 = c2∂

2y
∂x2 , (5)

where the constant c satisfies

c2 =
F
ρ
. (6)

• Eq. (5) is the 1D wave equation and c is the wave speed.
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Some comments...

• (i) For the D string of a violin, F ≈ 55 N, ρ ≈ 1.4× 10−3

kg m−1 ⇒ c ≈ 200 ms−1

• (ii) We have assumed F is uniform. Hooke’s Law⇒ change in
F ∝ change in length. But

change in length = δs − δx

≈

{
1 +

(
∂y
∂x

)2
}1/2

δx − δx

≈

{
1 +

1
2

(
∂y
∂x

)2

− 1

}
δx

=
1
2

(
∂y
∂x

)2

δx

which is second-order in small quantities⇒ the assumption of
uniform F is OK.
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Some comments... Kinetic Energy

• (iii) The kinetic energy (KE) of an element of length δs is

1
2
ρδs

(
∂y
∂t

)2

≈ 1
2
ρ

(
∂y
∂t

)2

δx ,

which implies that the KE between x = a and x = b (> a) is

KE = T =
1
2
ρ

∫ b

a

(
∂y
∂t

)2

dx . (7)
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Some comments... Potential Energy

The potential energy (PE) of an element of length δs is

F × increase in length = F (δs − δx)

≈ 1
2

F
(
∂y
∂x

)2

δx (from(ii)).

Thus the PE between x = a and x = b (> a) is

PE = V =
1
2

F
∫ b

a

(
∂y
∂x

)2

dx . (8)

NB

T ,V are second-order in small quantities, i.e. (∂y/∂x)2,
(∂y/∂t)2, whereas the wave equation Eq. (5) itself is first-order.
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D’Alembert’s general solution

• Unusually we can find the general solution of the wave
equation Eq. (5). Change variables from (x , t) to (u, v), where

u = x − ct , v = x + ct . (9)

Chain rule⇒
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D’Alembert’s general solution

∂y
∂x

=
∂y
∂u

∂u
∂x

+
∂y
∂v

∂v
∂x

=
∂y
∂u

+
∂y
∂v

= yu + yv ⇒

∂2y
∂x2 =

(
∂

∂u
+

∂

∂v

)
(yu + yv ) = yuu + 2yuv + yvv ,

and

∂y
∂t

=
∂y
∂u

∂u
∂t

+
∂y
∂v

∂v
∂t

= −cyu + cyv ⇒

∂2y
∂t2 = c2

(
∂

∂u
− ∂

∂v

)
(yu − yv )

= c2(yuu − 2yuv + yvv ).
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D’Alembert’s general solution

• Substitute in the wave equation Eq. (5)

c2(yuu + 2yuv + yvv ) = c2(yuu − 2yuv + yvv )

⇒

yuv =
∂2y
∂u∂v

= 0. (10)

Therefore,

∂

∂u

(
∂y
∂v

)
= 0⇒ ∂y

∂v
= g?(v),

where g? is any function1 ⇒

1Of course f , g must be differentiable (except, perhaps, at isolated points)
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D’Alembert’s general solution

y =

∫ v
g?(s)ds︸ ︷︷ ︸
g(v)

+f (u),

where f is any function1. Thus

y = f (u) + g(v),

i.e.
y = f (x − ct) + g(x + ct). (11)

Eq. (11) is d’Alembert’s solution (the general solution) of the
wave equation (5), first published in 1747 [J. le Rond
d’Alembert (1717-83)].
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D’Alembert’s general solution

• The functions f and g in Eq. (11) are determined by the
boundary and initial conditions.
For the moment we suppose the string is unbounded in both
directions, i.e. −∞ < x <∞.

To begin with, suppose that, at t = 0,

y(x ,0) = φ(x), ẏ(x ,0) = 0. (12)

Thus the string is initially at rest ∀ x , but has a displacement
given by y = Φ(x).
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D’Alembert’s general solution

From (11) and (12) we must have

f (x) + g(x) = Φ(x), −cf ′(x) + cg′(x) = 0.

where ′ denotes “derived function”. The second (RHS) gives
f ′(x) = g′(x)⇒ f (x) = g(x) + α, where α is a constant. The
first (LHS) then gives:

f (x) =
1
2

Φ(x) +
1
2
α, g(x) =

1
2

Φ(x)− 1
2
α.

Thus, from Eq. (11):

y(x , t) =
1
2

Φ(x − ct) +
1
2

Φ(x + ct). (13)
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Heaviside function

Definition
The Heaviside [O. Heaviside (1850-1925)] function H(x) is
defined by

H(x) =

{
1 (x ≥ 0)
0 (x < 0)

(14)
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Example 1

At t = 0, an infinite string is at rest and

y(x ,0) = b{H(x + a)− H(x − a)}, (15)

where a,b > 0 constants. Find y(x , t) for ∀ x , t and sketch your
solution.
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Example 1: Solution

Shifted Heaviside functions

Thus Eq. (15) has the sketch y(x ,0)

Figure: The initial profile y(x ,0)
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Example 1: Solution

Eq. (13) gives

y(x , t) =
b
2
{H(x − ct + a)− H(x − ct − a)}

+
b
2
{H(x + ct + a)− H(x + ct − a)} (16)

The first term is like y(x ,0) except that

(i) its height is (1/2)b, not b, and
(ii) its end points are (ct − a, ct + a), not (−a,a).

This is a signal with graph like Fig. 1 except for (i) and (ii).
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Example 1: Solution

Thus the first term in Eq. (16) has graph of travelling signal to
right with speed c:

Likewise the second term has graph of travelling sigal to left
with speed c:
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Example 1: Solution

The sum of the two pulses has a graph which depends on
whether they overlap; this happens for t such that

−ct + a > ct − a

⇒

t < a/c.
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Example 1: Solution - (a) t < a/c; (b) t > a/c
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Example 1: Solution - Summary

• This example illustrates well what Eq. (11) represents.

The term f (x − ct) has the same shape and size ∀ t (wave of
permanent form); as t increases the profile moves to the right
with speed c.
Likewise g(x + ct) is a profile of constant shape and size that
moves to the left with speed c. Each is a travelling wave (or
progressive wave).
In the above example, the initial profile splits into two; one half
travels to the right, one half to the left.
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Example 2

Consider
Eq. (12) with Φ(x) = a sin(kx), where a and k are constants.

Solution
From Eq. (13)⇒

y(x , t) =
1
2

a {sin[k(x − ct)] + sin[k(x + ct)]} . (17)

We shall revisit Eq. (17) soon.
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Initially moving string

• More general than Eq. (12) is the case when the string is also
moving at t = 0.

y(x ,0) = Φ(x), yt (x ,0) = Ψ(x). (18)

From Eqs. (11) and (18) we now have to choose f (x) and g(x)
so that

f (x) + g(x) = Φ(x), −cf ′(x) + cg′(x) = Ψ(x).

The second condition (RHS) gives

f ′(x)− g′(x) = (−1/c)Ψ(x)

⇒
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Initially moving string: General solution

f (x)− g(x) = (−1/c)

∫ x

d
Ψ(s)ds,

where d is a constant.

Thus

f (x) =
1
2

Φ(x)− 1
2c

∫ x

d
Ψ(s)ds,

g(x) =
1
2

Φ(x) +
1
2c

∫ x

d
Ψ(s)ds,

and from Eq. (11)⇒
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Initially moving string: General solution

y(x , t) =
1
2
{Φ(x − ct) + Φ(x + ct)}

+
1
2c

∫ x+ct

d
Ψ(s)ds − 1

2c

∫ x−ct

d
Ψ(s)ds

⇒

y(x , t) =
1
2
{Φ(x − ct) + Φ(x + ct)}+

1
2c

∫ x+ct

x−ct
Ψ(s)ds. (19)
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Example 3

Given that Φ(x) = a cos(kx), Ψ(x) = −kca sin(kx) in Eq. (18),
find y(x , t).

Solution
From Eq. (19),

y(x , t) =
a
2
{cos(k(x − ct)) + cos(k(x + ct))} − ka

2

∫ x+ct

x−ct
sin(ks)ds

=
a
2
{cos(k(x − ct)) + cos(k(x + ct))}+

a
2

[cos(ks)]x+ct
x−ct

= a cos(k(x + ct))

Thus the two terms in Eq. (19) combine so that the wave is
purely travelling to the left.
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Exercises for students:

Show that Eq. (19) gives a wave travelling only to the left
(i.e. y = g(x + ct)) if and only if Ψ(x) = cΦ′(x).

What initial conditions give

y(x , t) = a tanh(k(x − ct))

for

−∞ < x <∞ and ∀t ≥ 0?
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Standing waves

• Now Eq. (17)

y(x , t) =
1
2

a {sin[k(x − ct)] + sin[k(x + ct)]} .

can be written

(since sin A + sin B = 2 sin
[

A + B
2

]
cos

[
A− B

2

]
)

y(x , t) = a sin(kx) cos(kct) (20)

What is Eq. (20) describing?

Let’s take a snapshot...!

R. Erdélyi Waves on a Stretched String



Waves on Infinite Strings
Strings of Finite Length

Standing waves
Principle of superposition
Some technical remarks

Standing waves

• Now Eq. (17)

y(x , t) =
1
2

a {sin[k(x − ct)] + sin[k(x + ct)]} .

can be written

(since sin A + sin B = 2 sin
[

A + B
2

]
cos

[
A− B

2

]
)

y(x , t) = a sin(kx) cos(kct) (20)

What is Eq. (20) describing?

Let’s take a snapshot...!

R. Erdélyi Waves on a Stretched String



Waves on Infinite Strings
Strings of Finite Length

Standing waves
Principle of superposition
Some technical remarks

Standing waves

• Now Eq. (17)

y(x , t) =
1
2

a {sin[k(x − ct)] + sin[k(x + ct)]} .
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(since sin A + sin B = 2 sin
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Standing waves

Thus y is always zero at x = nπ/k .
Between x = r1π/k and x = r2π/k the string oscillates
periodically in time.
Eq. (20) is an example of a standing wave, with a being the
amplitude, k the wavenumber (k > 0), 2π/k the wavelength.
The period of oscillation is 2π/kc.
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Method of separation of variables

• Standing waves occur with a string of finite length L. Suppose
the string is fixed at x = 0, x = L (e.g., a piano wire or violin) so
the solution of Eq. (5), the wave equation, must satisfy

y(0, t) = y(L, t) = 0. (21)

We look for solutions of Eq. (5) of the form (separable solutions)

y(x , t) =

X (x)T (t)

(22)

Substituting in Eq. (5)⇒

c2X ′′T = XT̈

⇒
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Method of separation of variables

X ′′

X
=

1
c2

(
T̈
T

)
.

The LHS depends only on x , the RHS depends only on t so the
equation can be true for ∀ (x , t) only if

each side is a constant

.

There are three cases to consider.
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Case 1

[1] Constant > 0 = k2

⇒ governing equation:

X ′′ = k2X

⇒ with a solution:

X = A cosh(kx) + B sinh(kx).

From Eq. (21)⇒ A = B = 0. Not useful.
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Case 2

[2] Constant=0

⇒ governing equation:

X ′′ = 0

⇒ with a solution:

X = Ax + B.

From Eq. (21)⇒ A = B = 0. Not useful.
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Case 3

[3] Constant < 0 = −k2

⇒ governing equations:

X ′′ = −k2X ,
T̈ = −k2c2T . (23)

Solution of first of Eq. (23)⇒ X = A cos(kx) + B sin(kx).

From Eq. (21):

y(0, t) = 0 ⇒

A = 0⇒ y = B sin(kx)

y(L, t) = 0 ⇒

B sin(kL) = 0.
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From Eq. (21):

y(0, t) = 0 ⇒ A = 0⇒ y = B sin(kx)

y(L, t) = 0 ⇒ B sin(kL) = 0.
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Case 3

For useful/interesting results we cannot have B = 0 which
implies

sin(kl) = 0⇒ kL = nπ (n= 0,1,2...)
⇒

X = Bnsin(nπx/L)

and

T̈ = −(nπc/L)2T .

⇒

T = α cos(nπct/L) + β sin(nπct/L).
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Summary of a general solution

Thus a solution of Eq. (5) (wave equation) of the form Eq. (22)
(separable solutions) satisfying Eq. (21) (fixed boundary) is

y = sin
(nπx

L

){
αn cos

(
nπct

L

)
+ βn sin

(
nπct

L

)}
(n = 1,2,3...). (24)

For each n, the solution in Eq. (24) is a periodic wave [like
Eq. (20)] with period 2πL/nπc = 2L/nc.
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Nomenclatura

We often rewrite
cos(nπct/L) cos(ωnt)

as
sin(nπct/L) sin(ωnt)

where ωn is the angular frequency:

ωn =
nπc

L
. (25)

Definition (Normal mode)
Each of the solutions in Eq. (24) is a normal mode of vibration.
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Normal modes

Standing fundamental, 1st, and 2nd harmonics.
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Full general solution: Superposion

• Since Eq. (5) is a linear equation so any linear combination of
the solutions in Eq. (24) is also a solution. This is the principle
of superposition. Thus

y =
∞∑

n=1

sin
(nπx

L

){
αn cos

(
nπct

L

)
+ βn sin

(
nπct

L

)}
(26)

is a solution of Eq. (5) satisfying Eq. (21). It is in fact the
general solution of Eq. (5)-(21); the constants αn, βn are
determined by the initial conditions (see next Chapter).

Question: In general, is this solution periodic in time? Explain
your answer.
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Complex notation

• Consider the real part, <, of the complex quantity

A exp[i(kx − ωt)],

where k and ω are real but

A = Ar + iAi

is complex. Now

<{A exp[i(kx − ωt)]} = Ar cos(kx − ωt)− Ai sin(kx − ωt)

=
√

A2
r + A2

i cos[(kx − ωt) + ε]

where

cos ε = Ar/
√

A2
r + A2

i , sin ε = Ai/
√

A2
r + A2

i .
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Complex notation

We shall consider situations in which the dependent variable,
say φ, has the form

φ = α cos[(kx − ωt) + ε]

(or with sin instead of cos).

Note: φ = sin kx [(−α sin ε) cosωt + (α cos ε) sinωt ]
+ cos kx [(−α cos ε) cosωt + (α sin ε) sinωt ],

and the first term is equivalent to Eq. (24).

In linear problems it is often convenient to write (A complex;
k , ω real)

φ = A exp[i(kx − ωt)]; (27)

we do of course really mean the real part of Eq. (27) but many
problems can be solved most easily by working directly with
Eq. (27) and only taking the real part right at the end.
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Complex notation

In Eq. (27), k is again the wavenumber and ω is the angular
frequency.

To satisfy the 1D wave equation Eq. (5), ω = kc. The period is
2π/ω and the frequency is ω/2π. The frequency, measured in
s−1 (Hz, hertz), is the number of complete oscillations that the
wave makes during 1 sec at a fixed position. Finally,

|A| =
√

A2
r + A2

i

is the amplitude. Eq. (27) is a periodic or harmonic wave.
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