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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Difficult to define precisely: here are two “definitions”.

Waves on Infinite Strings

Definition (Coulson, 1941:)

“We are all familiar with the idea of a wave; thus, when a pebble
is dropped into a pond, water waves travel radially outwards;
when a piano is played, the wires vibrate and sound waves
spread throughout the room; when a radio station is
transmitting, electric waves move through the ether. These are
all examples of wave motion, and they have two important
properties in common: firstly, energy is propagated to distant
points; and secondly, the disturbance travels through the
medium without giving the medium as a whole any
permanent displacement.”
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What is a “wave™?
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Difficult to define precisely: here are two “definitions”.

Waves on Infinite Strings

Definition (Whitham, 1974:)

“...but to cover the whole range of wave phenomena it seems
preferable to be guided by the intuitive view that a wave is any
recognizable signal that is transferred from one part of the
medium to another with a recognizable velocity of
propagation.”
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Difficult to define precisely: here are two “definitions”.

Waves on Infinite Strings

Definition (Whitham, 1974:)

“...but to cover the whole range of wave phenomena it seems
preferable to be guided by the intuitive view that a wave is any
recognizable signal that is transferred from one part of the
medium to another with a recognizable velocity of
propagation.”

We begin with, perhaps, the simplest possible example. J
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Waves on Infinite Strings

A piece S of a string

@ We suppose the string is under tension F, and that its
mass per unit length is p. We consider transverse motion
only (L Ox), and let the displacement be y(x, t); we shall
suppose y is small or -more precisely- we suppose
| dy/Ox |< 1 everywhere.
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Waves on Infinite Strings

A piece S of a string

@ Longitudinal motion negligible = F is independent of x
(see part ii below). We also take p independent of x.
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Waves on Infinite Strings

A piece S of a string

@ Apply N2 to a small element of the string AB of length ds.

0%y
82
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Waves on Infinite Strings

Local geometry of string S

v

Now, from sketch Fig. 7

0y 1/2
532z5x2+5y2:>53z{1+(gi>} ox 2)
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Local geometry of string S

Therefore, because | 9y /0x |< 1V x (by assumption),

ds ~ ox (3)
to highest order.
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Waves on Infinite Strings

Local geometry of string S

Therefore, because | 9y /0x |< 1V x (by assumption),

08 ~ 6x 3)
to highest order. Likewise

tany = dy/ox < 1 = ¢ = Jy/ox,

and, in Eq. (1),
sin(¢ + 0v) —siny &~ cosy - oy
~ {1 +tan?y}~125y
~ 0y
~ 0(dy/ox)
~ (02%y/Ox?)ox.
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Waves on Infinite Strings

Local geometry of string S

Thus Eq. (1) becomes

Py F1%y, Foy
o2 poxox2T  pox?
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Waves on Infinite Strings

Local geometry of string S

Thus Eq. (1) becomes
Py F 1 82}/5 _ Fo2y

— L =~ ix=——=, 4
a2~ poxoxe’’ T L oxe “)
Finally we have
Py Py
oz =~ % oxe ®)
where the constant ¢ satisfies
F
c?=—. (6)
p
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Waves on Infinite Strings

Local geometry of string S

Thus Eq. (1) becomes
Py F 1 82}/5 _ Fo2y

gy _D 10V 0 4
o2~ poxax’* T pox? “)
Finally we have
Py Py
o7~ % ox ©)
where the constant c satisfies
F
c?==—. (6)
p
e Eq. (5) is the 1D wave equation and ¢ is the wave speed. J
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Waves on Infinite Strings

Some comments...

e (i) For the D string of a violin, F ~ 55N, p~ 1.4 x 1073
kgm~' = ¢~ 200 ms~'
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Waves on Infinite Strings

Some comments...

e (i) For the D string of a violin, F~ 55N, p~ 1.4 x 1073
kgm~' = ¢~ 200 ms~'

e (i) We have assumed F is uniform. Hooke’s Law = change in
F « change in length. But

changeinlength = §s—dx
oy 1/2
~ {1—1—(8y> } OX —0X
ox
1 /0y 2
1 /0y 2
2((9)() ox

which is second-order in small quantities = the assumption of P Ex
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Waves on Infinite Strings

Some comments... Kinetic Energy

e (iii) The kinetic energy (KE) of an element of length §s is

1 oy\2 1 [oy\?
2p53<8t> NP <at> o,

which implies that the KE between x = aand x = b (> a) is

1 [P /oy\2
KE_T_zp/a <m) ax. (7)
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Waves on Infinite Strings

Some comments... Potential Energy

The potential energy (PE) of an element of length s is

F xincrease in length = F(0s— dx)
1 oy 2 .
> <8x> ox  (from(ii)).
Thus the PE between x = aand x = b (> a) is
1_ [P /ay\?
PE=V= ZF/a (8)() ax. (8)
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Waves on Infinite Strings

Some comments... Potential Energy

The potential energy (PE) of an element of length s is

F xincrease in length = F(0s— dx)

1 oy 2 .
> <8x> ox  (from(ii)).

Thus the PE between x = aand x = b (> a) is

1 b 7oy \?
PE_V_ZF/a (ax> ax. 8)

T, V are second-order in small quantities, i.e. (9y/0x)?,
(Qy/0t)?, whereas the wave equation Eq. (5) itself is first-order.
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Waves on Infinite Strings

D’Alembert’s general solution

e Unusually we can find the general solution of the wave
equation Eq. (5). Change variables from (x, t) to (u, v), where

u=x-—ct, V=Xx+ct. 9)
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Waves on Infinite Strings

D’Alembert’s general solution

e Unusually we can find the general solution of the wave
equation Eq. (5). Change variables from (x, t) to (u, v), where

u=x-—ct, V=Xx+ct. 9)

Chain rule =
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D’Alembert’s solution and simple applications

D’Alembert’s general solution

oy _ oyou oyov oy oy

ox  ouox ovox ou ov etV
82 9 0

i (aﬁm) Y+ 1) = Yo+ 2 + Vv
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D’Alembert’s general solution

dy _ Oydu Oyov 9y Oy _

dx ~ dudx 9vdx du 6?v7y“+y":>
52 0 0

aTZ - (au+m)(y“+yv):yuu+2yuv+yw,
and

oy _ oyou ayov

ot~ ouot “ovar  Futh=

82y (0 9
Fa C (811_3\/) Yu—wv)
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D’Alembert’s general solution

dy _ Oydu Oyov 9y Oy _

dx ~ dudx 9vdx du 6?v7y“+y":>
52 0 0

aTZ - (au+m)(y“+yv):yuu+2yuv+yw,
and

oy _ oyou ayov

ot~ ouot “ovar  Futh=

82y (0 9
Fa C (811_3\/) Yu—wv)

= Cz(}/uu - 2yuv + yvv)~
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Waves on Infinite Strings

D’Alembert’s general solution

e Substitute in the wave equation Eq. (5)

Cz(yuu + 2V + Yw) = CZ(YUU — 2V + Yw)

4

v

XD

'0f course f, g must be differentiable (except, perhaps, at isolated points)
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D’Alembert’s general solution

Waves on Infinite Strings

e Substitute in the wave equation Eq. (5)

Cz(yuu + 2V + Yw) = CZ(YUU — 2V + Yw)

02y
oudv 0

Yuv

D Shettea

'Of course f, g must be differentiable (except, perhaps, at isolated points)l
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D’Alembert’s general solution

Waves on Infinite Strings

e Substitute in the wave equation Eq. (5)

Cz(yuu + 2V + Yw) = CZ(YUU — 2V + Yw)

02y
oudv 0

Yuv

Therefore,

g (oy\ _ @_
w(av>—°;‘av—g*(v)’

where g, is any function' =

'0f course f, g must be differentiable (except, perhaps, at isolated points)
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Waves on Infinite Strings

D’Alembert’s general solution

v
y:/ 0. ()ds +1(u),
—_—
g(v)

where f is any function'. Thus
y = f(u)+g(v),
y = f(x —ct) + g(x + ct). (11)
Eqg. (11) is d’Alembert’s solution (the general solution) of the

wave equation (5), first published in 1747 [J. le Rond
d’Alembert (1717-83)].
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Waves on Infinite Strings

D’Alembert’s general solution

e The functions f and g in Eqg. (11) are determined by the
boundary and initial conditions.

For the moment we suppose the string is unbounded in both
directions, i.e. —0co < X < oc.
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Waves on Infinite Strings

D’Alembert’s general solution

e The functions f and g in Eqg. (11) are determined by the
boundary and initial conditions.

For the moment we suppose the string is unbounded in both
directions, i.e. —oo < X < 0.

To begin with, suppose that, at t = 0,

y(X,O):gb(X), Y(X>O):O' (12)

Thus the string is initially at rest V x, but has a displacement
given by y = &(x).
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Waves on Infinite Strings

D’Alembert’s general solution

From (11) and (12) we must have

f(x)+ g(x) = o(x), —cf'(x)+cg'(x)=0.
where ' denotes “derived function”. The second (RHS) gives
f'(x) = g'(x) = f(x) = g(x) + a, where « is a constant. The
first (LHS) then gives:
() = 2000 + 50, g(x) = 56(x) - &
~2 2% 9X =3 2%
Thus, from Eq. (11):
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Waves on Infinite Strings

D’Alembert’s general solution

From (11) and (12) we must have

f(x) + g(x) = ®(x), —cf'(x)+cg'(x) = 0.

where ' denotes “derived function”. The second (RHS) gives
f'(x) = g'(x) = f(x) = g(x) + a, where « is a constant. The
first (LHS) then gives:

1 1 1 1
Thus, from Eq. (11):
1 1
y(x,t) = §¢(X —ct) + écb(x + cf). (13)
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Waves on Infinite Strings

Heaviside function

The Heaviside [O. Heaviside (1850-1925)] function H(x) is
defined by
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Heaviside function

The Heaviside [O. Heaviside (1850-1925)] function H(x) is
defined by

m”:{o ul& (14)
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Waves on Infinite Strings

Heaviside function

The Heaviside [O. Heaviside (1850-1925)] function H(x) is
defined by

_J1 (x=0)
H(x) = { ( (14)

x <0)

X
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Waves on Infinite Strings

Example 1

At t = 0, an infinite string is at rest and

y(x,0) = b{H(x+ a) — H(x — a)}, (15)

where a, b > 0 constants. Find y(x, t) for V x, t and sketch your
solution.
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Example 1: Solution

Shifted Heaviside functions
A Y=H(x+a)

-a X

Thus Eq. (15) has the sketch y(x, 0)

R. Erdélyi
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Waves on Infinite Strings

Example 1: Solution

Shifted Heaviside functions
4 y=H(x+a) y=H(x-a)

>
>

-a X a

x V¥

Thus Eq. (15) has the sketch y(x, 0)
y(x,0)

-a a X
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Waves on Infinite Strings

Example 1: Solution

Eqg. (13) gives

y(x,t) = g{H(x—CtJra)—H(x—ct—a)}
+ g{H(x+ct+a)—H(x+ct—a)} (16)

The first term is like y(x, 0) except that
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Example 1: Solution

Eqg. (13) gives

y(x,t) = g{H(x—CtJra)—H(x—ct—a)}
+ g{H(x+ct+a)—H(x+ct—a)} (16)

The first term is like y(x, 0) except that
@ (/) its heightis (1/2)b, not b, and
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Waves on Infinite Strings

Example 1: Solution

Eqg. (13) gives

y(x,t) = g{H(x—CtJra)—H(x—ct—a)}
+ g{H(x+ct+a)—H(x+ct—a)} (16)

The first term is like y(x, 0) except that

@ (/) its heightis (1/2)b, not b, and

@ (ii) its end points are (ct — a, ct + a), not (—a, a).
This is a signal with graph like Fig. 1 except for (/) and (ii).
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Waves on Infinite Strings

Example 1: Solution

Thus the first term in Eq. (16) has graph of travelling signal to
right with speed c:

v

0 cta ct+a X
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Waves on Infinite Strings

Example 1: Solution

Thus the first term in Eq. (16) has graph of travelling signal to
right with speed c:

y(x,0)

)
Z2P |-

>

0 cta ct+a X

Likewise the second term has graph of travelling sigal to left
with speed c:

y(x,0)

-ct-a -ct+ta 0 X
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Waves on Infinite Strings

Example 1: Solution

The sum of the two pulses has a graph which depends on
whether they overlap; this happens for t such that
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Example 1: Solution

The sum of the two pulses has a graph which depends on
whether they overlap; this happens for t such that

—ct+a>ct—a
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Waves on Infinite Strings

Example 1: Solution

The sum of the two pulses has a graph which depends on
whether they overlap; this happens for t such that

—ct+a>ct—a

t<alc.
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Example 1: Solution - (a) t < a/c; (b) t > a/c

Waves on Infinite Strings

-ct-a ct-a 0 -ct+a ct+a X
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Example 1: Solution - (a) t < a/c; (b) t > a/c

Waves on Infinite Strings

-ct-a ct-a 0 -ct+a ct+a X

y(x.t)

-ct-a ctta 0 cta ct+a X
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Waves on Infinite Strings

Example 1: Solution - Summary

e This example illustrates well what Eq. (11) represents.
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Waves on Infinite Strings

Example 1: Solution - Summary

e This example illustrates well what Eq. (11) represents.

The term f(x — ct) has the same shape and size V t (wave of
permanent form); as t increases the profile moves to the right
with speed c.

The
University
s of

X Shettea,
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Waves on Infinite Strings

Example 1: Solution - Summary

e This example illustrates well what Eq. (11) represents.

The term f(x — ct) has the same shape and size V t (wave of
permanent form); as t increases the profile moves to the right
with speed c.

Likewise g(x + ct) is a profile of constant shape and size that
moves to the left with speed c. Each is a travelling wave (or
progressive wave).
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Waves on Infinite Strings

Example 1: Solution - Summary

e This example illustrates well what Eq. (11) represents.

The term f(x — ct) has the same shape and size V t (wave of
permanent form); as t increases the profile moves to the right
with speed c.

Likewise g(x + ct) is a profile of constant shape and size that
moves to the left with speed c. Each is a travelling wave (or
progressive wave).

In the above example, the initial profile splits into two; one half
travels to the right, one half to the left.
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Waves on Infinite Strings

Example 2

Eq. (12) with ®(x) = asin(kx), where a and k are constants.
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Example 2

Eq. (12) with ®(x) = asin(kx), where a and k are constants.

From Eqg. (13) =
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Waves on Infinite Strings

Example 2

Eq. (12) with ®(x) = asin(kx), where a and k are constants.

From Eqg. (13) =

y(x,t) = %a{sin[k(x — ct)] + sin[k(x + ct)]} . (17)

We shall revisit Eq. (17) soon. ]
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Waves on Infinite Strings

Initially moving string

e More general than Eq. (12) is the case when the string is also
moving at t = 0.

y(x,0) = ®(x),  yi(x,0) = W(x). (18)
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Waves on Infinite Strings

Initially moving string

e More general than Eq. (12) is the case when the string is also
moving at t = 0.

y(x,0) =o(x),  yi(x,0) = ¥(x). (18)
From Egs. (11) and (18) we now have to choose f(x) and g(x)
so that
Fx)+g(x) = d(x),  —cf(x) +cg'(x) = W(x).

R. Erdélyi Waves on a Stretched String



What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Initially moving string

e More general than Eq. (12) is the case when the string is also
moving at t = 0.

y(x,0) =o(x),  yi(x,0) = ¥(x). (18)
From Egs. (11) and (18) we now have to choose f(x) and g(x)
so that
Fx)+g(x) = d(x),  —cf(x) +cg'(x) = W(x).

The second condition (RHS) gives

fi(x) = 9'(x) = (=1/c)¥(x)

=

R. Erdélyi Waves on a Stretched String



What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Initially moving string: General solution

X

f(x) — 9(x) = (~1/0) / W(s)ds,

d
where d is a constant.
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Initially moving string: General solution

Waves on Infinite Strings

where d is a constant.
Thus

and from Eq. (11) =
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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Initially moving string: General solution

y(x,t) = % {®(x —ct) + d(x + ct)}

1 X+ct 1 Xx—ct
+ 2C/d \Il(s)ds—ZC/d V(s)ds
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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Initially moving string: General solution

y(x,t) = % {®(x —ct) + d(x + ct)}

1 X+ct 1 Xx—ct
+ 2C/d \Il(s)ds—ZC/d V(s)ds

1 X+-ct
y(x,t) = 5 {o(x —ct) + ¢(x+ct)} + 56 / V(s)ds. (19)

x—ct

R. Erdélyi Waves on a Stretched String



What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Example 3

Given that ®(x) = acos(kx), V(x) = —kcasin(kx) in Eq. (18),
find y(x, t).
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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Example 3

Given that ®(x) = acos(kx), V(x) = —kcasin(kx) in Eq. (18),
find y(x, t).

Solution
From Eq. (19),

Xx+ct
y(x, 1) g {cos(k(x — ct)) + cos(k(x + ct)) / sin(ks)d

= 2 {cos(k(x — ot)) + cos(K(x + ct))} + 5 [cos(ks)L*,

= acos(k(x + ct))
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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

Example 3

Given that ®(x) = acos(kx), V(x) = —kcasin(kx) in Eq. (18),
find y(x, t).

Solution
From Eq. (19),

Xx+ct
y(x, 1) g {cos(k(x — ct)) + cos(k(x + ct)) / sin(ks)d

= 2 {cos(k(x — ot)) + cos(K(x + ct))} + 5 [cos(ks)L*,

= acos(k(x + ct))

Thus the two terms in Eq. (19) combine so that the wave is
purely travelling to the left.
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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

@ Show that Eq. (19) gives a wave travelling only to the left
(i.,e. y = g(x + ct)) if and only if W(x) = c®’(x).
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What is a “wave”?
Derivation of Governing PDE
D’Alembert’s solution and simple applications

Waves on Infinite Strings

@ Show that Eq. (19) gives a wave travelling only to the left
(i.,e. y = g(x + ct)) if and only if W(x) = c®’(x).

@ What initial conditions give

y(x,t) = atanh(k(x — ct))

for

—00 < X < oo and Vit > 07
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Outline

9 Strings of Finite Length
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Standing waves

e Now Eq. (17)

y(x,t) = %a{sin[k(x — ct)] + sin[k(x + ct)]} .

can be written

(since sinA+sin B =2sin {A er B] cos {A _ B])

2

y(x,t) = asin(kx) cos(kct) (20)
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Standing waves

e Now Eq. (17)

y(x,t) = %a{sin[k(x — ct)] + sin[k(x + ct)]} .

can be written

(since sinA+sin B =2sin {A er B] cos {A ; B])
y(x,t) = asin(kx) cos(kct) (20)
What is Eq. (20) describing? )
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Standing waves

e Now Eq. (17)

y(x,t) = %a{sin[k(x — ct)] + sin[k(x + ct)]} .

can be written

(since sinA+sinB = 2sin {A er B] cos {A ; B] )
y(x,t) = asin(kx) cos(kct) (20)
What is Eq. (20) describing? Let’s take a snapshot...! |

R. Erdélyi Waves on a Stretched String



Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Standing waves

Thus y is always zero at x = nr/k.

Between x = ryw/k and x = romw/k the string oscillates
periodically in time.

Eg. (20) is an example of a standing wave, with a being the
amplitude, k the wavenumber (k > 0), 27 /k the wavelength. g ...
The period of oscillation is 27/ kc. o
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Method of separation of variables

e Standing waves occur with a string of finite length L. Suppose
the string is fixed at x = 0, x = L (e.g., a piano wire or violin) so
the solution of Eq. (5), the wave equation, must satisfy

y(0,t) =y(L,t)=0. (21)
We look for solutions of Eq. (5) of the form (separable solutions)

y(x,t) = (22)

Substituting in Eq. (5) =
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Method of separation of variables

e Standing waves occur with a string of finite length L. Suppose
the string is fixed at x = 0, x = L (e.g., a piano wire or violin) so
the solution of Eq. (5), the wave equation, must satisfy

y(0,t) =y(L,t)=0. (21)
We look for solutions of Eq. (5) of the form (separable solutions)

y(x;t) = X(x)T(1) (22)

Substituting in Eq. (5) =
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Method of separation of variables

e Standing waves occur with a string of finite length L. Suppose
the string is fixed at x = 0, x = L (e.g., a piano wire or violin) so
the solution of Eq. (5), the wave equation, must satisfy

y(0,t) =y(L,t)=0. (21)
We look for solutions of Eq. (5) of the form (separable solutions)

y(x;t) = X(x)T(1) (22)

Substituting in Eq. (5) =

EX'T =XT

=
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Method of separation of variables

X1 (T
X 2 \T/

The LHS depends only on x, the RHS depends only on t so the
equation can be true for V (x, t) only if
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Method of separation of variables

X1 (T
X 2 \T/

The LHS depends only on x, the RHS depends only on t so the
equation can be true for V (x, t) only if each side is a constant.
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Method of separation of variables

X1 (T
X 2 \T/

The LHS depends only on x, the RHS depends only on t so the
equation can be true for V (x, t) only if each side is a constant.

There are three cases to consider. )
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[1] Constant > 0 = k2

= governing equation:
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[1] Constant > 0 = k2
= governing equation:
X" = kX

= with a solution:
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[1] Constant > 0 = k2
= governing equation:
X" = kX
= with a solution:
X = Acosh(kx) + Bsinh(kx).
From Eq. (21) =
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[1] Constant > 0 = k2
= governing equation:
X" = k?X
= with a solution:
X = Acosh(kx) + Bsinh(kx).
From Eq. (21) = A = B = 0. Not useful.

R. Erdélyi Waves on a Stretched String



Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[2] Constant=0

= governing equation:
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[2] Constant=0

= governing equation:

X//

I
o

= with a solution:
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[2] Constant=0

= governing equation:

X//

I
o

= with a solution:

X =Ax+ B.
From Eq. (21) =
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[2] Constant=0

= governing equation:

X//

I
o

= with a solution:

X =Ax+B.
From Eq. (21) = A = B = 0. Not useful.
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[3] Constant < 0 = —k?

= governing equations:
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[3] Constant < 0 = —k?

= governing equations:

X' = —Kk°X
T = —Kk2¢°T. (23)

Solution of first of Eq. (23) = X =
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[3] Constant < 0 = —k?

= governing equations:
X' = —Kk°X
T = —Kk2¢°T. (23)
Solution of first of Eq. (23) = X = Acos(kx) + Bsin(kx).

From Eq. (21):
y(0,t)=0 =

y(Lt)=0 =
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

[3] Constant < 0 = —k?

= governing equations:
X' = —Kk°X
T = —Kk2¢°T. (23)
Solution of first of Eq. (23) = X = Acos(kx) + Bsin(kx).

From Eq. (21):
y(0,t)=0 = A=0= y=Bsin(kx)

y(L,t)=0 = Bsin(kL) =0.
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

For useful/interesting results we cannot have B = 0 which
implies
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

For useful/interesting results we cannot have B = 0 which
implies sin(kl) = 0 = kL =
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

For useful/interesting results we cannot have B = 0 which
implies sin(kl) =0 = kL = nm (n=0,1,2...)
=

X =
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

For useful/interesting results we cannot have B = 0 which
implies sin(kl) =0 = kL = nm (n=0,1,2...)

=
X = Bpsin(nmx/L)
and
T = —(nmwc/L)T.
=
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Standing waves
Principle of superposition
Some technical remarks

Strings of Finite Length

For useful/interesting results we cannot have B = 0 which
implies sin(kl) =0 = kL = nm (n=0,1,2...)

=
X = Bpsin(nmx/L)
and
T = —(nmwc/L)T.
=

T = acos(nrct/L) + gsin(nrct/L).
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Summary of a general solution

Thus a solution of Eq. (5) (wave equation) of the form Eq. (22)
(separable solutions) satisfying Eq. (21) (fixed boundary) is

y = sin (mLTX) {an cos <n720t> + Bpsin (T)}

(n=1,2,3...). (24)

For each n, the solution in Eq. (24) is a periodic wave [like
Eq. (20)] with period 2xL/nrc = 2L/nc.

=
= X
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Standing waves
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Nomenclatura

We often rewrite

cos(nmct/L) cos(wnt)
as
sin(nrct/L) sin(wnt)
where wj, is the angular frequency:
_ e

Wn = L

Definition (Normal mode)
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Normal modes

“fundamental ¢\ i N /o i A

~ second!

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Standing fundamental, 1st, and 2nd harmonics.
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Full general solution: Superposion

e Since Eq. (5) is a linear equation so any linear combination of
the solutions in Eq. (24) is also a solution. This is the principle
of superposition. Thus

y = is/n (HLLX) {ancos (ncht> + Bpsin <n72ct>} (26)

is a solution of Eq. (5) satisfying Eq. (21). It is in fact the
general solution of Eq. (5)-(21); the constants «,, 3, are
determined by the initial conditions (see next Chapter).

Question: In general, is this solution periodic in time? Explain
your answer.

R. Erdélyi Waves on a Stretched String




Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Complex notation

e Consider the real part, &, of the complex quantity

Aexpli(kx — wt)],
where k and w are real but

A=A+ A
is complex. Now

R{Aexpli(kx —wt)]} = Arcos(kx —wt) — A;sin(kx — wt)

= /A2 + A2cos[(kx — wt) + €]

where

cose=A/\JAZ+ A2, sine=Ai/\/AZ + AZ.
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Complex notation

We shall consider situations in which the dependent variable,
say ¢, has the form

¢ = acos[(kx — wt) + €]
(or with sin instead of cos).

Note: ¢ = sin kx[(—a sin€) cos wt + (a cos €) sin wi]
+ cos kx[(—acose) coswt + (asine) sinwl],
and the first term is equivalent to Eq. (24).

In linear problems it is often convenient to write (A complex;
k,w real)
o = Aexpli(kx — wt)]; (27)

we do of course really mean the real part of Eq. (27) but many
problems can be solved most easily by working directly with g ..
Eqg. (27) and only taking the real part right at the end. o
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Standing waves
Principle of superposition

Strings of Finite Length Some technical remarks

Complex notation

In Eq. (27), k is again the wavenumber and w is the angular
frequency.

To satisfy the 1D wave equation Eq. (5), w = kc. The period is
27 /w and the frequency is w/27. The frequency, measured in
s~ (Hz, hertz), is the number of complete oscillations that the
wave makes during 1 sec at a fixed position. Finally,

Al =\ /A2 + A

is the amplitude. Eq. (27) is a periodic or harmonic wave.
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